ECOSYSTEM

       What is an ecosystem? We usually hear this word during science classes. Well, according to the Meriam-Webster Dictionary, it means "the complex of the community of organisms and its environment functioning as an ecological unit" while in the Wikipedia Encyclopedia, it says and I quote "Ecosystem is a biological system consisting of all the living organisms or biotic component in a particular area and the nonliving or abiotic component with which the organisms interact, such as air, mineral soil, water and sunlight ". So basically, it's an environment. An ecological community.
Arthur Tansley, a British ecologist, was the first person to use the term 'ecosystem' in a published work. He regarded ecosystems not simply as natural units, but as mental isolates.  
          Okay,so there is such a thing we call “Ecosystem Processes”, in which the energy and carbon enter ecosystems through photosynthesis, and are incorporated into living tissue, transferred to other organisms that feed on the living and dead plant matter, and eventually released through respiration. Most mineral nutrients, on the other hand, are recycled within ecosystems.             

Primary production



http://bits.wikimedia.org/skins-1.19/common/images/magnify-clip.png
Primary production is the production of organic matter from inorganic carbon sources. Overwhelmingly, this occurs through photosynthesis. The energy incorporated through this process supports life on earth, while the carbon makes up much of the organic matter in living and dead biomass, soil carbon and fossil fuels. It also drives the carbon cycle, which influences global climate via the greenhouse effect.
Through the process of photosynthesis, plants capture energy from light and use it to combine carbon dioxide and water to produce carbohydrates and oxygen. The photosynthesis carried out by all the plants in an ecosystem is called the gross primary production (GPP). About 48–60% of the GPP is consumed in plant respiration. The remainder, that portion of GPP that is not used up by respiration, is known as the net primary production (NPP). Total photosynthesis is limited by a range of environmental factors. These include the amount of light available, the amount of leaf area a plant has to capture light (shading by other plants is a major limitation of photosynthesis), rate at which carbon dioxide can be supplied to the chloroplasts to support photosynthesis, the availability of water, and the availability of suitable temperatures for carrying out photosynthesis.






Energy flow






The carbon and energy incorporated into plant tissues (net primary production) is either consumed by animals while the plant is alive, or it remains uneaten when the plant tissue dies and becomes detritus. In terrestrial ecosystems, roughly 90% of the NPP ends up being broken down by decomposers. The remainder is either consumed by animals while still alive and enters the plant-based trophic system, or it is consumed after it has died, and enters the detritus-based trophic system. In aquatic systems, the proportion of plant biomass that gets consumed by herbivores is much higher. In trophic systems photosynthetic organisms are the primary producers. The organisms The carbon and energy incorporated into plant tissues is either consumed by animals while the plant is alive, or it that consume their tissues are called primary consumers or secondary producers—herbivores. Organisms which feed on microbes (bacteria andfungi) are termed microbivores. Animals that feed on primary consumers—carnivores—are secondary consumers. Each of these constitutes atrophic level. The sequence of consumption—from plant to herbivore, to carnivore—forms a food chain. Real systems are much more complex than this—organisms will generally feed on more than one form of food, and may feed at more than one trophic level. Carnivores may capture some prey which are part of a plant-based trophic system and others that are part of a detritus-based trophic system (a bird that feeds both on herbivorous grasshoppers and earthworms, which consume detritus). Real systems, with all these complexities, form food webs rather than food chains.

Decomposition

The carbon and nutrients in dead organic matter are broken down by a group of processes known as decomposition. This releases nutrients that can then be re-used for plant and microbial production, and returns carbon dioxide to the atmosphere (or water) where it can be used for photosynthesis. In the absence of decomposition, dead organic matter would accumulate in an ecosystem and nutrients and atmospheric carbon dioxide would be depleted. Approximately 90% of terrestrial NPP goes directly from plant to decomposer. 





Ecosystem management



When natural resource management is applied to whole ecosystems, rather than single species, it is termed ecosystem management. A variety of definitions exist: F. Stuart Chapin and coauthors define it as "the application of ecological science to resource management to promote long-term sustainability of ecosystems and the delivery of essential ecosystem goods and services", while Norman Christensen and coauthors defined it as "management driven by explicit goals, executed by policies, protocols, and practices, and made adaptable by monitoring and research based on our best understanding of the ecological interactions and processes necessary to sustain ecosystem structure and function" and Peter Brussard and colleagues defined it as "managing areas at various scales in such a way that ecosystem services and biological resources are preserved while appropriate human use and options for livelihood are sustained".

Although definitions of ecosystem management abound, there is a common set of principles which underlie these definitions. A fundamental principle is the long-term sustainability of the production of goods and services by the ecosystem; "intergenerational sustainability [is] a precondition for management, not an afterthought". It also requires clear goals with respect to future trajectories and behaviors of the system being managed. Other important requirements include a sound ecological understanding of the system, including connectedness, ecological dynamics and the context in which the system is embedded. Other important principles include an understanding of the role of humans as components of the ecosystems and the use of adaptive management. While ecosystem management can be used as part of a plan forwilderness conservation, it can also be used in intensively managed ecosystems (see, for example, agroecosystems and close to nature forestry).

Ecosystem dynamics


Ecosystems are dynamic entities—invariably, they are subject to periodic disturbances and are in the process of recovering from some past disturbance. When an ecosystem is subject to some sort of perturbation, it responds by moving away from its initial state. The tendency of a system to remain close to its equilibrium state, despite that disturbance, is termed its resistance. On the other hand, the speed with which it returns to its initial state after disturbance is called its resilience.

The theoretical ecologist Robert Ulanowicz has used information theory tools to describe the structure of ecosystems, emphasizing mutual information (correlations) in studied systems. Drawing on this methodology and prior observations of complex ecosystems, Ulanowicz depicts approaches to determining the stress levels on ecosystems and predicting system reactions to defined types of alteration in their settings (such as increased or reduced energy flow, and eutrophication.

Walang komento:

Mag-post ng isang Komento